home *** CD-ROM | disk | FTP | other *** search
Unknown | 1996-07-11 | 10.6 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 06'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 23 29 00 00 27 01 00 00 |TUTOR 06|#)..'...|
|00000010| 53 65 63 74 69 6f 6e 20 | 31 2e 37 20 20 4c 69 6e |Section |1.7 Lin|
|00000020| 65 61 72 20 49 6e 65 71 | 75 61 6c 69 74 69 65 73 |ear Ineq|ualities|
|00000030| 0d 0a 00 0d 0a 00 0e 65 | 31 2d 37 2d 31 0e 47 75 |.......e|1-7-1.Gu|
|00000040| 69 64 65 64 20 45 78 61 | 6d 70 6c 65 20 20 31 0f |ided Exa|mple 1.|
|00000050| 20 20 49 64 65 6e 74 69 | 66 79 69 6e 67 20 74 68 | Identi|fying th|
|00000060| 65 20 47 72 61 70 68 20 | 6f 66 20 61 6e 20 49 6e |e Graph |of an In|
|00000070| 65 71 75 61 6c 69 74 79 | 0d 0a 00 0d 0b 00 0e 65 |equality|.......e|
|00000080| 31 2d 37 2d 32 0e 47 75 | 69 64 65 64 20 45 78 61 |1-7-2.Gu|ided Exa|
|00000090| 6d 70 6c 65 20 20 32 0f | 20 20 53 6f 6c 76 69 6e |mple 2.| Solvin|
|000000a0| 67 20 61 20 4c 69 6e 65 | 61 72 20 49 6e 65 71 75 |g a Line|ar Inequ|
|000000b0| 61 6c 69 74 79 0d 0a 00 | 0d 0b 00 0e 65 31 2d 37 |ality...|....e1-7|
|000000c0| 2d 33 0e 47 75 69 64 65 | 64 20 45 78 61 6d 70 6c |-3.Guide|d Exampl|
|000000d0| 65 20 20 33 0f 20 20 53 | 6f 6c 76 69 6e 67 20 61 |e 3. S|olving a|
|000000e0| 20 4c 69 6e 65 61 72 20 | 49 6e 65 71 75 61 6c 69 | Linear |Inequali|
|000000f0| 74 79 0d 0a 00 0d 0b 00 | 0e 65 31 2d 37 2d 34 0e |ty......|.e1-7-4.|
|00000100| 47 75 69 64 65 64 20 45 | 78 61 6d 70 6c 65 20 20 |Guided E|xample |
|00000110| 34 0f 20 20 53 6f 6c 76 | 69 6e 67 20 61 20 44 6f |4. Solv|ing a Do|
|00000120| 75 62 6c 65 20 49 6e 65 | 71 75 61 6c 69 74 79 0d |uble Ine|quality.|
|00000130| 0a 00 0d 0b 00 0e 65 31 | 2d 37 2d 35 0e 47 75 69 |......e1|-7-5.Gui|
|00000140| 64 65 64 20 45 78 61 6d | 70 6c 65 20 20 35 0f 20 |ded Exam|ple 5. |
|00000150| 20 53 6f 6c 76 69 6e 67 | 20 61 6e 20 41 62 73 6f | Solving| an Abso|
|00000160| 6c 75 74 65 20 56 61 6c | 75 65 20 49 6e 65 71 75 |lute Val|ue Inequ|
|00000170| 61 6c 69 74 79 0d 0a 00 | 0d 0b 00 0e 65 31 2d 37 |ality...|....e1-7|
|00000180| 2d 36 0e 47 75 69 64 65 | 64 20 45 78 61 6d 70 6c |-6.Guide|d Exampl|
|00000190| 65 20 20 36 0f 20 20 53 | 6f 6c 76 69 6e 67 20 61 |e 6. S|olving a|
|000001a0| 6e 20 41 62 73 6f 6c 75 | 74 65 20 56 61 6c 75 65 |n Absolu|te Value|
|000001b0| 20 49 6e 65 71 75 61 6c | 69 74 79 0d 0a 00 0d 0b | Inequal|ity.....|
|000001c0| 00 0e 65 31 2d 37 2d 37 | 0e 47 75 69 64 65 64 20 |..e1-7-7|.Guided |
|000001d0| 45 78 61 6d 70 6c 65 20 | 20 37 0f 20 20 41 6e 20 |Example | 7. An |
|000001e0| 41 70 70 6c 69 63 61 74 | 69 6f 6e 20 6f 66 20 49 |Applicat|ion of I|
|000001f0| 6e 65 71 75 61 6c 69 74 | 69 65 73 0d 0a 00 0d 0b |nequalit|ies.....|
|00000200| 00 0e 69 31 2d 37 2d 31 | 0e 49 6e 74 65 67 72 61 |..i1-7-1|.Integra|
|00000210| 74 65 64 20 45 78 61 6d | 70 6c 65 20 20 31 0f 20 |ted Exam|ple 1. |
|00000220| 20 53 6f 6c 75 74 69 6f | 6e 73 20 6f 66 20 61 6e | Solutio|ns of an|
|00000230| 20 49 6e 65 71 75 61 6c | 69 74 79 0d 0a 00 0d 0b | Inequal|ity.....|
|00000240| 00 0e 69 31 2d 37 2d 32 | 0e 49 6e 74 65 67 72 61 |..i1-7-2|.Integra|
|00000250| 74 65 64 20 45 78 61 6d | 70 6c 65 20 20 32 0f 20 |ted Exam|ple 2. |
|00000260| 20 44 65 74 65 72 6d 69 | 6e 69 6e 67 20 57 68 65 | Determi|ning Whe|
|00000270| 6e 20 61 20 52 61 64 69 | 63 61 6e 64 20 69 73 20 |n a Radi|cand is |
|00000280| 4e 6f 6e 6e 65 67 61 74 | 69 76 65 0d 0a 00 0d 0b |Nonnegat|ive.....|
|00000290| 00 0e 69 31 2d 37 2d 33 | 0e 49 6e 74 65 67 72 61 |..i1-7-3|.Integra|
|000002a0| 74 65 64 20 45 78 61 6d | 70 6c 65 20 20 33 0f 20 |ted Exam|ple 3. |
|000002b0| 20 41 62 73 6f 6c 75 74 | 65 20 56 61 6c 75 65 20 | Absolut|e Value |
|000002c0| 4e 6f 74 61 74 69 6f 6e | 20 61 6e 64 20 49 6e 65 |Notation| and Ine|
|000002d0| 71 75 61 6c 69 74 69 65 | 73 0d 0a 00 53 65 63 74 |qualitie|s...Sect|
|000002e0| 69 6f 6e 20 31 2e 37 20 | 20 4c 69 6e 65 61 72 20 |ion 1.7 | Linear |
|000002f0| 49 6e 65 71 75 61 6c 69 | 74 69 65 73 0d 0b 00 4d |Inequali|ties...M|
|00000300| 61 74 63 68 20 74 68 65 | 20 69 6e 65 71 75 61 6c |atch the| inequal|
|00000310| 69 74 79 20 77 69 74 68 | 20 69 74 73 20 67 72 61 |ity with| its gra|
|00000320| 70 68 2e 0d 0a 00 0d 0b | 00 28 61 29 20 20 2d 31 |ph......|.(a) -1|
|00000330| 20 11 34 3c 20 11 33 78 | 20 11 31 3c 20 33 20 20 | .4< .3x| .1< 3 |
|00000340| 20 20 20 20 20 20 20 20 | 20 20 20 28 62 29 20 20 | | (b) |
|00000350| 2d 31 20 3c 20 11 33 78 | 20 11 34 3c 20 11 31 33 |-1 < .3x| .4< .13|
|00000360| 20 20 20 20 20 20 20 20 | 20 20 20 20 28 63 29 20 | | (c) |
|00000370| 20 11 33 78 20 11 31 3e | 20 2d 31 0d 0a 00 20 20 | .3x .1>| -1... |
|00000380| 0d 0b 00 49 2e 20 20 20 | 20 20 20 20 20 20 20 20 |...I. | |
|00000390| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 49 49 | | II|
|000003a0| 2e 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|000003b0| 20 20 20 20 20 20 20 20 | 49 49 49 2e 0d 0a 00 0d | |III.....|
|000003c0| 0b 00 20 14 6b 32 2d 37 | 2d 32 61 2e 69 14 33 14 |.. .k2-7|-2a.i.3.|
|000003d0| 37 14 33 30 14 34 14 20 | 20 20 14 6b 32 2d 37 2d |7.30.4. | .k2-7-|
|000003e0| 32 62 2e 69 14 33 30 14 | 37 14 33 30 14 34 14 20 |2b.i.30.|7.30.4. |
|000003f0| 20 20 14 6b 32 2d 37 2d | 32 63 2e 69 14 35 37 14 | .k2-7-|2c.i.57.|
|00000400| 37 14 33 30 14 34 14 0d | 0a 00 0d 0b 00 13 12 31 |7.30.4..|.......1|
|00000410| 53 4f 4c 55 54 49 4f 4e | 12 30 0d 0a 00 0d 0b 00 |SOLUTION|.0......|
|00000420| 61 29 20 2d 31 20 11 34 | 3c 20 11 33 78 20 11 31 |a) -1 .4|< .3x .1|
|00000430| 3c 20 33 0d 0a 00 20 20 | 20 54 68 69 73 20 67 72 |< 3... | This gr|
|00000440| 61 70 68 20 73 68 6f 75 | 6c 64 20 69 6e 63 6c 75 |aph shou|ld inclu|
|00000450| 64 65 20 61 6c 6c 20 74 | 68 65 20 70 6f 69 6e 74 |de all t|he point|
|00000460| 73 20 62 65 74 77 65 65 | 6e 20 2d 31 20 61 6e 64 |s betwee|n -1 and|
|00000470| 20 33 2e 13 0d 0a 00 20 | 20 20 54 68 65 20 69 6e | 3..... | The in|
|00000480| 65 71 75 61 6c 69 74 79 | 20 73 79 6d 62 6f 6c 20 |equality| symbol |
|00000490| 11 34 3c 20 11 31 69 6e | 64 69 63 61 74 65 73 20 |.4< .1in|dicates |
|000004a0| 74 68 61 74 20 77 65 20 | 73 68 6f 75 6c 64 20 61 |that we |should a|
|000004b0| 6c 73 6f 20 69 6e 63 6c | 75 64 65 20 74 68 65 20 |lso incl|ude the |
|000004c0| 6c 65 66 74 0d 0a 00 20 | 20 20 65 6e 64 70 6f 69 |left... | endpoi|
|000004d0| 6e 74 2c 20 2d 31 2e 20 | 20 54 6f 20 64 6f 20 74 |nt, -1. | To do t|
|000004e0| 68 69 73 2c 20 77 65 20 | 75 73 65 20 61 20 62 72 |his, we |use a br|
|000004f0| 61 63 6b 65 74 2e 13 0d | 0a 00 20 20 20 54 68 65 |acket...|.. The|
|00000500| 20 69 6e 65 71 75 61 6c | 69 74 79 20 73 79 6d 62 | inequal|ity symb|
|00000510| 6f 6c 20 3c 20 69 6e 64 | 69 63 61 74 65 73 20 74 |ol < ind|icates t|
|00000520| 68 61 74 20 77 65 20 64 | 6f 20 6e 6f 74 20 69 6e |hat we d|o not in|
|00000530| 63 6c 75 64 65 20 74 68 | 65 20 72 69 67 68 74 20 |clude th|e right |
|00000540| 0d 0a 00 20 20 20 65 6e | 64 70 6f 69 6e 74 2c 20 |... en|dpoint, |
|00000550| 33 2e 20 20 54 6f 20 64 | 6f 20 74 68 69 73 2c 20 |3. To d|o this, |
|00000560| 77 65 20 75 73 65 20 61 | 20 70 61 72 65 6e 74 68 |we use a| parenth|
|00000570| 65 73 69 73 2e 13 0d 0a | 00 20 20 20 54 68 65 72 |esis....|. Ther|
|00000580| 65 66 6f 72 65 2c 20 77 | 65 20 63 68 6f 6f 73 65 |efore, w|e choose|
|00000590| 20 47 72 61 70 68 20 49 | 49 2e 13 0d 0a 00 0d 0b | Graph I|I.......|
|000005a0| 00 62 29 20 2d 31 20 3c | 20 11 33 78 20 11 34 3c |.b) -1 <| .3x .4<|
|000005b0| 20 11 31 33 0d 0a 00 20 | 20 20 54 68 65 20 67 72 | .13... | The gr|
|000005c0| 61 70 68 20 6f 66 20 74 | 68 69 73 20 69 6e 65 71 |aph of t|his ineq|
|000005d0| 75 61 6c 69 74 79 20 73 | 68 6f 75 6c 64 20 61 6c |uality s|hould al|
|000005e0| 73 6f 20 69 6e 63 6c 75 | 64 65 20 61 6c 6c 20 74 |so inclu|de all t|
|000005f0| 68 65 20 70 6f 69 6e 74 | 73 20 62 65 74 77 65 65 |he point|s betwee|
|00000600| 6e 20 2d 31 0d 0a 00 20 | 20 20 61 6e 64 20 33 2e |n -1... | and 3.|
|00000610| 0d 0a 00 20 20 20 48 6f | 77 65 76 65 72 2c 20 68 |... Ho|wever, h|
|00000620| 65 72 65 20 77 65 20 64 | 6f 20 6e 6f 74 20 69 6e |ere we d|o not in|
|00000630| 63 6c 75 64 65 20 2d 31 | 2c 20 61 6e 64 20 77 65 |clude -1|, and we|
|00000640| 20 64 6f 20 69 6e 63 6c | 75 64 65 20 33 2e 13 0d | do incl|ude 3...|
|00000650| 0a 00 20 20 20 54 68 65 | 72 65 66 6f 72 65 2c 20 |.. The|refore, |
|00000660| 77 65 20 63 68 6f 6f 73 | 65 20 47 72 61 70 68 20 |we choos|e Graph |
|00000670| 49 2e 13 0d 0a 00 0d 0b | 00 63 29 20 11 33 78 20 |I.......|.c) .3x |
|00000680| 11 31 3e 20 2d 31 0d 0a | 00 20 20 20 54 68 65 20 |.1> -1..|. The |
|00000690| 67 72 61 70 68 20 6f 66 | 20 74 68 69 73 20 69 6e |graph of| this in|
|000006a0| 65 71 75 61 6c 69 74 79 | 20 73 68 6f 75 6c 64 20 |equality| should |
|000006b0| 69 6e 63 6c 75 64 65 20 | 61 6c 6c 20 72 65 61 6c |include |all real|
|000006c0| 20 6e 75 6d 62 65 72 73 | 20 67 72 65 61 74 65 72 | numbers| greater|
|000006d0| 20 74 68 61 6e 0d 0a 00 | 20 20 20 2d 31 2c 20 6e | than...| -1, n|
|000006e0| 6f 74 20 2d 31 20 69 74 | 73 65 6c 66 2e 13 0d 0a |ot -1 it|self....|
|000006f0| 00 20 20 20 54 68 65 72 | 65 66 6f 72 65 2c 20 77 |. Ther|efore, w|
|00000700| 65 20 63 68 6f 6f 73 65 | 20 47 72 61 70 68 20 49 |e choose| Graph I|
|00000710| 49 49 2e 0d 0a 00 53 65 | 63 74 69 6f 6e 20 31 2e |II....Se|ction 1.|
|00000720| 37 20 20 4c 69 6e 65 61 | 72 20 49 6e 65 71 75 61 |7 Linea|r Inequa|
|00000730| 6c 69 74 69 65 73 0d 0b | 00 53 6f 6c 76 65 20 74 |lities..|.Solve t|
|00000740| 68 65 20 69 6e 65 71 75 | 61 6c 69 74 79 20 61 6e |he inequ|ality an|
|00000750| 64 20 73 6b 65 74 63 68 | 20 74 68 65 20 73 6f 6c |d sketch| the sol|
|00000760| 75 74 69 6f 6e 20 73 65 | 74 20 6f 6e 20 74 68 65 |ution se|t on the|
|00000770| 20 72 65 61 6c 20 6e 75 | 6d 62 65 72 20 6c 69 6e | real nu|mber lin|
|00000780| 65 2e 0d 0a 00 0d 0b 00 | 20 20 20 20 20 20 20 20 |e.......| |
|00000790| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000007a0| 20 37 11 33 78 20 11 31 | 2b 20 31 20 3c 20 32 32 | 7.3x .1|+ 1 < 22|
|000007b0| 0d 0a 00 0d 0b 00 13 12 | 31 53 4f 4c 55 54 49 4f |........|1SOLUTIO|
|000007c0| 4e 12 30 0d 0a 00 0d 0b | 00 20 20 20 20 20 20 20 |N.0.....|. |
|000007d0| 20 20 20 37 11 33 78 20 | 11 31 2b 20 31 20 3c 20 | 7.3x |.1+ 1 < |
|000007e0| 32 32 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |22 | |
|000007f0| 20 20 20 20 12 31 11 32 | 47 69 76 65 6e 20 69 6e | .1.2|Given in|
|00000800| 65 71 75 61 6c 69 74 79 | 11 31 12 30 13 0d 0a 00 |equality|.1.0....|
|00000810| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000820| 20 37 11 33 78 20 11 31 | 3c 20 32 31 20 20 20 20 | 7.3x .1|< 21 |
|00000830| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 12 31 | | .1|
|00000840| 11 32 53 75 62 74 72 61 | 63 74 20 31 20 66 72 6f |.2Subtra|ct 1 fro|
|00000850| 6d 20 62 6f 74 68 20 73 | 69 64 65 73 11 31 12 30 |m both s|ides.1.0|
|00000860| 13 0d 0a 00 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |....... | |
|00000870| 20 20 20 20 20 20 11 33 | 78 20 11 31 3c 20 33 20 | .3|x .1< 3 |
|00000880| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000890| 20 20 12 31 11 32 44 69 | 76 69 64 65 20 62 6f 74 | .1.2Di|vide bot|
|000008a0| 68 20 73 69 64 65 73 20 | 62 79 20 37 11 31 12 30 |h sides |by 7.1.0|
|000008b0| 13 0d 0a 00 0d 0b 00 54 | 68 75 73 2c 20 74 68 65 |.......T|hus, the|
|000008c0| 20 73 6f 6c 75 74 69 6f | 6e 20 73 65 74 20 63 6f | solutio|n set co|
|000008d0| 6e 73 69 73 74 73 20 6f | 66 20 61 6c 6c 20 72 65 |nsists o|f all re|
|000008e0| 61 6c 20 6e 75 6d 62 65 | 72 73 20 74 68 61 74 20 |al numbe|rs that |
|000008f0| 61 72 65 20 6c 65 73 73 | 20 74 68 61 6e 20 33 2e |are less| than 3.|
|00000900| 13 0d 0a 00 54 68 65 20 | 69 6e 74 65 72 76 61 6c |....The |interval|
|00000910| 20 6e 6f 74 61 74 69 6f | 6e 20 66 6f 72 20 74 68 | notatio|n for th|
|00000920| 69 73 20 73 6f 6c 75 74 | 69 6f 6e 20 73 65 74 20 |is solut|ion set |
|00000930| 69 73 20 28 2d 11 34 38 | 11 31 2c 20 33 29 2e 13 |is (-.48|.1, 3)..|
|00000940| 0d 0a 00 54 68 65 20 67 | 72 61 70 68 20 6f 66 20 |...The g|raph of |
|00000950| 74 68 69 73 20 73 6f 6c | 75 74 69 6f 6e 20 73 65 |this sol|ution se|
|00000960| 74 20 69 73 20 73 68 6f | 77 6e 20 62 65 6c 6f 77 |t is sho|wn below|
|00000970| 2e 0d 0a 00 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |....... | |
|00000980| 20 20 20 20 20 20 20 20 | 20 20 20 20 14 6b 32 2d | | .k2-|
|00000990| 37 2d 33 2e 6d 14 32 33 | 14 32 37 14 35 30 14 35 |7-3.m.23|.27.50.5|
|000009a0| 14 0d 0a 00 53 65 63 74 | 69 6f 6e 20 31 2e 37 20 |....Sect|ion 1.7 |
|000009b0| 20 4c 69 6e 65 61 72 20 | 49 6e 65 71 75 61 6c 69 | Linear |Inequali|
|000009c0| 74 69 65 73 0d 0b 00 53 | 6f 6c 76 65 20 74 68 65 |ties...S|olve the|
|000009d0| 20 69 6e 65 71 75 61 6c | 69 74 79 20 61 6e 64 20 | inequal|ity and |
|000009e0| 73 6b 65 74 63 68 20 74 | 68 65 20 73 6f 6c 75 74 |sketch t|he solut|
|000009f0| 69 6f 6e 20 73 65 74 20 | 6f 6e 20 74 68 65 20 72 |ion set |on the r|
|00000a00| 65 61 6c 20 6e 75 6d 62 | 65 72 20 6c 69 6e 65 2e |eal numb|er line.|
|00000a10| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |...... | |
|00000a20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 2d 32 | | -2|
|00000a30| 28 11 33 78 20 11 31 2b | 20 33 29 20 3c 20 11 33 |(.3x .1+| 3) < .3|
|00000a40| 78 20 11 31 2d 20 31 32 | 0d 0a 00 13 12 31 53 4f |x .1- 12|.....1SO|
|00000a50| 4c 55 54 49 4f 4e 12 30 | 0d 0a 00 0d 0b 00 2d 32 |LUTION.0|......-2|
|00000a60| 28 11 33 78 20 11 31 2b | 20 33 29 20 3c 20 11 33 |(.3x .1+| 3) < .3|
|00000a70| 78 20 11 31 2d 20 31 32 | 20 20 20 20 20 20 20 20 |x .1- 12| |
|00000a80| 20 20 20 20 20 20 20 20 | 20 20 20 20 12 31 11 32 | | .1.2|
|00000a90| 47 69 76 65 6e 20 69 6e | 65 71 75 61 6c 69 74 79 |Given in|equality|
|00000aa0| 11 31 12 30 13 0d 0a 00 | 0d 0b 00 20 20 2d 32 11 |.1.0....|... -2.|
|00000ab0| 33 78 20 11 31 2d 20 36 | 20 3c 20 11 33 78 20 11 |3x .1- 6| < .3x .|
|00000ac0| 31 2d 20 31 32 20 20 20 | 20 20 20 20 20 20 20 20 |1- 12 | |
|00000ad0| 20 20 20 20 20 20 20 20 | 20 12 31 11 32 52 65 6d | | .1.2Rem|
|00000ae0| 6f 76 65 20 70 61 72 65 | 6e 74 68 65 73 65 73 11 |ove pare|ntheses.|
|00000af0| 31 12 30 13 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |1.0.....|.. |
|00000b00| 2d 33 11 33 78 20 11 31 | 3c 20 2d 36 20 20 20 20 |-3.3x .1|< -6 |
|00000b10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b20| 20 20 20 20 12 31 11 32 | 53 75 62 74 72 61 63 74 | .1.2|Subtract|
|00000b30| 20 78 20 26 20 61 64 64 | 20 36 20 74 6f 20 62 6f | x & add| 6 to bo|
|00000b40| 74 68 20 73 69 64 65 73 | 11 31 12 30 13 0d 0a 00 |th sides|.1.0....|
|00000b50| 0d 0b 00 20 20 20 20 20 | 20 20 20 11 33 78 20 11 |... | .3x .|
|00000b60| 31 3e 20 32 20 20 20 20 | 20 20 20 20 20 20 20 20 |1> 2 | |
|00000b70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 12 31 11 | | .1.|
|00000b80| 32 44 69 76 69 64 65 20 | 62 79 20 2d 33 20 26 20 |2Divide |by -3 & |
|00000b90| 72 65 76 65 72 73 65 20 | 69 6e 65 71 75 61 6c 69 |reverse |inequali|
|00000ba0| 74 79 11 31 12 30 13 0d | 0a 00 0d 0b 00 54 68 75 |ty.1.0..|.....Thu|
|00000bb0| 73 2c 20 74 68 65 20 73 | 6f 6c 75 74 69 6f 6e 20 |s, the s|olution |
|00000bc0| 73 65 74 20 63 6f 6e 73 | 69 73 74 73 20 6f 66 20 |set cons|ists of |
|00000bd0| 61 6c 6c 20 72 65 61 6c | 20 6e 75 6d 62 65 72 73 |all real| numbers|
|00000be0| 20 74 68 61 74 20 61 72 | 65 20 67 72 65 61 74 65 | that ar|e greate|
|00000bf0| 72 20 74 68 61 6e 20 32 | 2e 13 0d 0a 00 54 68 65 |r than 2|.....The|
|00000c00| 20 69 6e 74 65 72 76 61 | 6c 20 6e 6f 74 61 74 69 | interva|l notati|
|00000c10| 6f 6e 20 66 6f 72 20 74 | 68 69 73 20 73 6f 6c 75 |on for t|his solu|
|00000c20| 74 69 6f 6e 20 69 73 20 | 28 32 2c 20 11 34 38 11 |tion is |(2, .48.|
|00000c30| 31 29 2e 13 0d 0a 00 54 | 68 65 20 67 72 61 70 68 |1).....T|he graph|
|00000c40| 20 6f 66 20 74 68 69 73 | 20 73 6f 6c 75 74 69 6f | of this| solutio|
|00000c50| 6e 20 73 65 74 20 69 73 | 20 73 68 6f 77 6e 20 62 |n set is| shown b|
|00000c60| 65 6c 6f 77 2e 0d 0a 00 | 20 20 20 20 20 20 20 20 |elow....| |
|00000c70| 20 20 20 20 20 20 20 20 | 20 20 20 20 14 6b 32 2d | | .k2-|
|00000c80| 37 2d 34 2e 6d 14 32 33 | 14 32 39 14 35 30 14 35 |7-4.m.23|.29.50.5|
|00000c90| 14 0d 0a 00 0d 0a 00 53 | 65 63 74 69 6f 6e 20 31 |.......S|ection 1|
|00000ca0| 2e 37 20 20 4c 69 6e 65 | 61 72 20 49 6e 65 71 75 |.7 Line|ar Inequ|
|00000cb0| 61 6c 69 74 69 65 73 0d | 0b 00 53 6f 6c 76 65 20 |alities.|..Solve |
|00000cc0| 74 68 65 20 69 6e 65 71 | 75 61 6c 69 74 79 20 61 |the ineq|uality a|
|00000cd0| 6e 64 20 73 6b 65 74 63 | 68 20 74 68 65 20 73 6f |nd sketc|h the so|
|00000ce0| 6c 75 74 69 6f 6e 20 73 | 65 74 20 6f 6e 20 74 68 |lution s|et on th|
|00000cf0| 65 20 72 65 61 6c 20 6e | 75 6d 62 65 72 20 6c 69 |e real n|umber li|
|00000d00| 6e 65 2e 0d 0a 00 0d 0b | 00 20 20 20 20 20 20 20 |ne......|. |
|00000d10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d20| 20 20 20 20 20 20 20 20 | 11 33 78 20 11 31 2b 20 | |.3x .1+ |
|00000d30| 33 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |3... | |
|00000d40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 2d 32 | | -2|
|00000d50| 20 3c 20 11 34 32 32 32 | 32 32 20 11 31 3c 20 32 | < .4222|22 .1< 2|
|00000d60| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000d70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d80| 20 20 20 2d 33 0d 0a 00 | 13 12 31 53 4f 4c 55 54 | -3...|..1SOLUT|
|00000d90| 49 4f 4e 12 30 0d 0a 00 | 0d 0b 00 20 20 20 20 20 |ION.0...|... |
|00000da0| 11 33 78 20 11 31 2b 20 | 33 0d 0b 00 2d 32 20 3c |.3x .1+ |3...-2 <|
|00000db0| 20 11 34 32 32 32 32 32 | 20 11 31 3c 20 32 20 20 | .422222| .1< 2 |
|00000dc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000dd0| 12 31 11 32 47 69 76 65 | 6e 20 69 6e 65 71 75 61 |.1.2Give|n inequa|
|00000de0| 6c 69 74 79 11 31 12 30 | 0d 0b 00 20 20 20 20 20 |lity.1.0|... |
|00000df0| 20 2d 33 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | -3 | |
|00000e00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e20| 20 13 0d 0a 00 0d 0b 00 | 20 36 20 3e 20 11 33 78 | .......| 6 > .3x|
|00000e30| 20 11 31 2b 20 33 20 3e | 20 2d 36 20 20 20 20 20 | .1+ 3 >| -6 |
|00000e40| 20 20 20 20 20 20 20 20 | 20 20 20 20 12 31 11 32 | | .1.2|
|00000e50| 4d 75 6c 74 69 70 6c 79 | 20 62 79 20 2d 33 20 61 |Multiply| by -3 a|
|00000e60| 6e 64 20 72 65 76 65 72 | 73 65 20 69 6e 65 71 75 |nd rever|se inequ|
|00000e70| 61 6c 69 74 79 11 31 12 | 30 13 0d 0a 00 0d 0a 00 |ality.1.|0.......|
|00000e80| 20 20 20 33 20 3e 20 11 | 33 78 20 11 31 3e 20 2d | 3 > .|3x .1> -|
|00000e90| 39 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |9 | |
|00000ea0| 20 20 20 20 12 31 11 32 | 53 75 62 74 72 61 63 74 | .1.2|Subtract|
|00000eb0| 20 33 11 31 12 30 13 0d | 0a 00 0d 0b 00 57 65 20 | 3.1.0..|.....We |
|00000ec0| 63 61 6e 20 72 65 77 72 | 69 74 65 20 74 68 69 73 |can rewr|ite this|
|00000ed0| 20 61 6e 73 77 65 72 20 | 61 73 20 2d 39 20 3c 20 | answer |as -9 < |
|00000ee0| 11 33 78 20 11 31 3c 20 | 33 2e 13 0d 0a 00 54 68 |.3x .1< |3.....Th|
|00000ef0| 65 20 67 72 61 70 68 20 | 69 6e 63 6c 75 64 65 73 |e graph |includes|
|00000f00| 20 61 6c 6c 20 74 68 65 | 20 70 6f 69 6e 74 73 20 | all the| points |
|00000f10| 62 65 74 77 65 65 6e 20 | 2d 39 20 61 6e 64 20 33 |between |-9 and 3|
|00000f20| 2c 20 61 6e 64 20 69 73 | 20 72 65 70 72 65 73 65 |, and is| represe|
|00000f30| 6e 74 65 64 20 62 79 20 | 74 68 65 0d 0a 00 69 6e |nted by |the...in|
|00000f40| 74 65 72 76 61 6c 20 28 | 2d 39 2c 20 33 29 2e 0d |terval (|-9, 3)..|
|00000f50| 0a 00 0d 0a 00 20 20 20 | 20 20 20 20 14 6b 32 2d |..... | .k2-|
|00000f60| 37 2d 35 2e 6d 14 32 33 | 14 32 38 14 35 30 14 35 |7-5.m.23|.28.50.5|
|00000f70| 14 0d 0a 00 53 65 63 74 | 69 6f 6e 20 31 2e 37 20 |....Sect|ion 1.7 |
|00000f80| 20 4c 69 6e 65 61 72 20 | 49 6e 65 71 75 61 6c 69 | Linear |Inequali|
|00000f90| 74 69 65 73 0d 0b 00 53 | 6f 6c 76 65 20 74 68 65 |ties...S|olve the|
|00000fa0| 20 69 6e 65 71 75 61 6c | 69 74 79 20 61 6e 64 20 | inequal|ity and |
|00000fb0| 73 6b 65 74 63 68 20 74 | 68 65 20 73 6f 6c 75 74 |sketch t|he solut|
|00000fc0| 69 6f 6e 20 73 65 74 20 | 6f 6e 20 74 68 65 20 72 |ion set |on the r|
|00000fd0| 65 61 6c 20 6e 75 6d 62 | 65 72 20 6c 69 6e 65 2e |eal numb|er line.|
|00000fe0| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |...... | |
|00000ff0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001000| 11 33 7c 78 20 11 31 2b | 20 31 11 33 7c 20 11 31 |.3|x .1+| 1.3| .1|
|00001010| 3c 20 31 0d 0a 00 0d 0b | 00 13 12 31 53 4f 4c 55 |< 1.....|...1SOLU|
|00001020| 54 49 4f 4e 12 30 0d 0a | 00 0d 0b 00 20 20 20 20 |TION.0..|.... |
|00001030| 20 11 33 7c 78 20 11 31 | 2b 20 31 11 33 7c 20 11 | .3|x .1|+ 1.3| .|
|00001040| 31 3c 20 31 20 20 20 20 | 20 20 20 20 20 20 20 20 |1< 1 | |
|00001050| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 12 31 | | .1|
|00001060| 11 32 47 69 76 65 6e 20 | 69 6e 65 71 75 61 6c 69 |.2Given |inequali|
|00001070| 74 79 11 31 12 30 13 0d | 0a 00 0d 0b 00 20 20 20 |ty.1.0..|..... |
|00001080| 20 20 20 20 20 20 20 2d | 31 20 3c 20 11 33 78 20 | -|1 < .3x |
|00001090| 11 31 2b 20 31 20 3c 20 | 31 20 20 20 20 20 20 20 |.1+ 1 < |1 |
|000010a0| 20 20 20 20 20 20 20 20 | 20 20 20 12 31 11 32 45 | | .1.2E|
|000010b0| 71 75 69 76 61 6c 65 6e | 74 20 69 6e 65 71 75 61 |quivalen|t inequa|
|000010c0| 6c 69 74 69 65 73 11 31 | 12 30 13 0d 0a 00 0d 0b |lities.1|.0......|
|000010d0| 00 20 20 20 20 20 20 2d | 31 20 2d 20 31 20 3c 20 |. -|1 - 1 < |
|000010e0| 11 33 78 20 11 31 2b 20 | 31 20 2d 20 31 20 3c 20 |.3x .1+ |1 - 1 < |
|000010f0| 31 20 2d 20 31 20 20 20 | 20 20 20 20 20 20 20 12 |1 - 1 | .|
|00001100| 31 11 32 53 75 62 74 72 | 61 63 74 20 31 20 66 72 |1.2Subtr|act 1 fr|
|00001110| 6f 6d 20 61 6c 6c 20 74 | 68 72 65 65 20 70 61 72 |om all t|hree par|
|00001120| 74 73 11 31 12 30 13 0d | 0a 00 0d 0b 00 20 20 20 |ts.1.0..|..... |
|00001130| 20 20 20 20 20 20 20 2d | 32 20 3c 20 11 33 78 20 | -|2 < .3x |
|00001140| 11 31 3c 20 30 20 20 20 | 20 20 20 20 20 20 20 20 |.1< 0 | |
|00001150| 20 20 20 20 20 20 20 20 | 20 20 20 12 31 11 32 53 | | .1.2S|
|00001160| 6f 6c 75 74 69 6f 6e 20 | 73 65 74 11 31 12 30 13 |olution |set.1.0.|
|00001170| 0d 0a 00 0d 0b 00 54 68 | 75 73 2c 20 74 68 65 20 |......Th|us, the |
|00001180| 73 6f 6c 75 74 69 6f 6e | 20 73 65 74 20 63 6f 6e |solution| set con|
|00001190| 73 69 73 74 73 20 6f 66 | 20 61 6c 6c 20 72 65 61 |sists of| all rea|
|000011a0| 6c 20 6e 75 6d 62 65 72 | 73 20 74 68 61 74 20 61 |l number|s that a|
|000011b0| 72 65 20 67 72 65 61 74 | 65 72 20 74 68 61 6e 20 |re great|er than |
|000011c0| 2d 32 20 0d 0a 00 61 6e | 64 20 6c 65 73 73 20 74 |-2 ...an|d less t|
|000011d0| 68 61 6e 20 30 2e 13 0d | 0a 00 54 68 65 20 69 6e |han 0...|..The in|
|000011e0| 74 65 72 76 61 6c 20 6e | 6f 74 61 74 69 6f 6e 20 |terval n|otation |
|000011f0| 66 6f 72 20 74 68 69 73 | 20 73 6f 6c 75 74 69 6f |for this| solutio|
|00001200| 6e 20 69 73 20 28 2d 32 | 2c 20 30 29 2e 13 0d 0a |n is (-2|, 0)....|
|00001210| 00 54 68 65 20 67 72 61 | 70 68 20 6f 66 20 74 68 |.The gra|ph of th|
|00001220| 69 73 20 73 6f 6c 75 74 | 69 6f 6e 20 73 65 74 20 |is solut|ion set |
|00001230| 69 73 20 73 68 6f 77 6e | 20 62 65 6c 6f 77 2e 0d |is shown| below..|
|00001240| 0a 00 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |..... | |
|00001250| 20 20 20 20 14 6b 32 2d | 37 2d 36 2e 6d 14 32 33 | .k2-|7-6.m.23|
|00001260| 14 33 30 14 35 30 14 35 | 14 0d 0a 00 53 65 63 74 |.30.50.5|....Sect|
|00001270| 69 6f 6e 20 31 2e 37 20 | 20 4c 69 6e 65 61 72 20 |ion 1.7 | Linear |
|00001280| 49 6e 65 71 75 61 6c 69 | 74 69 65 73 0d 0b 00 53 |Inequali|ties...S|
|00001290| 6f 6c 76 65 20 74 68 65 | 20 69 6e 65 71 75 61 6c |olve the| inequal|
|000012a0| 69 74 79 20 61 6e 64 20 | 73 6b 65 74 63 68 20 74 |ity and |sketch t|
|000012b0| 68 65 20 73 6f 6c 75 74 | 69 6f 6e 20 6f 6e 20 74 |he solut|ion on t|
|000012c0| 68 65 20 72 65 61 6c 20 | 6e 75 6d 62 65 72 20 6c |he real |number l|
|000012d0| 69 6e 65 2e 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |ine.....|.. |
|000012e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000012f0| 20 20 20 20 11 33 7c 78 | 20 11 31 2b 20 31 11 33 | .3|x| .1+ 1.3|
|00001300| 7c 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 ||... | |
|00001310| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 7c 11 | | |.|
|00001320| 34 32 32 32 32 32 11 33 | 7c 20 11 34 3e 20 11 31 |422222.3|| .4> .1|
|00001330| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|00001340| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 | | .3|
|00001350| 7c 20 11 31 2d 33 20 20 | 11 33 7c 0d 0a 00 11 31 || .1-3 |.3|....1|
|00001360| 13 12 31 53 4f 4c 55 54 | 49 4f 4e 12 30 0d 0a 00 |..1SOLUT|ION.0...|
|00001370| 0d 0b 00 11 33 7c 78 20 | 11 31 2b 20 31 11 33 7c |....3|x |.1+ 1.3||
|00001380| 0d 0b 00 7c 11 34 32 32 | 32 32 32 11 33 7c 20 11 |...|.422|222.3| .|
|00001390| 34 3e 20 11 31 32 20 20 | 20 20 20 20 20 20 20 20 |4> .12 | |
|000013a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013b0| 20 20 20 20 20 12 31 11 | 32 47 69 76 65 6e 20 69 | .1.|2Given i|
|000013c0| 6e 65 71 75 61 6c 69 74 | 79 11 31 12 30 0d 0b 00 |nequalit|y.1.0...|
|000013d0| 11 33 7c 20 11 31 2d 33 | 20 20 11 33 7c 0d 0b 00 |.3| .1-3| .3|...|
|000013e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001400| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001410| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001420| 11 31 13 0d 0a 00 20 20 | 11 33 78 20 11 31 2b 20 |.1.... |.3x .1+ |
|00001430| 31 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |1 | |
|00001440| 20 20 20 20 11 33 78 20 | 11 31 2b 20 31 0d 0b 00 | .3x |.1+ 1...|
|00001450| 20 20 11 34 32 32 32 32 | 32 20 3c 20 11 31 2d 32 | .42222|2 < .1-2|
|00001460| 20 20 20 20 20 20 6f 72 | 20 20 20 20 20 20 11 34 | or| .4|
|00001470| 32 32 32 32 32 20 3e 20 | 11 31 32 20 20 20 20 20 |22222 > |.12 |
|00001480| 20 20 12 31 11 32 45 71 | 75 69 76 61 6c 65 6e 74 | .1.2Eq|uivalent|
|00001490| 20 69 6e 65 71 75 61 6c | 69 74 69 65 73 11 31 12 | inequal|ities.1.|
|000014a0| 30 0d 0b 00 20 20 20 2d | 33 20 20 20 20 20 20 20 |0... -|3 |
|000014b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 2d | | -|
|000014c0| 33 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |3 | |
|000014d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014e0| 20 20 20 20 20 20 20 20 | 20 20 20 13 0d 0a 00 0d | | .....|
|000014f0| 0b 00 20 20 11 33 78 20 | 11 31 2b 20 31 20 11 34 |.. .3x |.1+ 1 .4|
|00001500| 3e 20 11 31 36 20 20 20 | 20 20 20 20 20 20 20 20 |> .16 | |
|00001510| 20 20 20 20 11 33 78 20 | 11 31 2b 20 31 20 11 34 | .3x |.1+ 1 .4|
|00001520| 3c 20 11 31 2d 36 20 20 | 20 20 20 20 12 31 11 32 |< .1-6 | .1.2|
|00001530| 4d 75 6c 74 69 70 6c 79 | 20 62 79 20 2d 33 20 26 |Multiply| by -3 &|
|00001540| 20 72 65 76 65 72 73 65 | 20 69 6e 65 71 75 61 6c | reverse| inequal|
|00001550| 69 74 79 11 31 12 30 13 | 0d 0a 00 0d 0a 00 20 20 |ity.1.0.|...... |
|00001560| 20 20 20 20 11 33 78 20 | 11 34 3e 20 11 31 35 20 | .3x |.4> .15 |
|00001570| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001580| 20 20 11 33 78 20 11 34 | 3c 20 11 31 2d 37 20 20 | .3x .4|< .1-7 |
|00001590| 20 20 20 20 12 31 11 32 | 53 75 62 74 72 61 63 74 | .1.2|Subtract|
|000015a0| 20 31 20 66 72 6f 6d 20 | 62 6f 74 68 20 73 69 64 | 1 from |both sid|
|000015b0| 65 73 11 31 12 30 13 0d | 0a 00 0d 0b 00 54 68 75 |es.1.0..|.....Thu|
|000015c0| 73 2c 20 74 68 65 20 73 | 6f 6c 75 74 69 6f 6e 20 |s, the s|olution |
|000015d0| 73 65 74 20 63 6f 6e 73 | 69 73 74 73 20 6f 66 20 |set cons|ists of |
|000015e0| 61 6c 6c 20 72 65 61 6c | 20 6e 75 6d 62 65 72 73 |all real| numbers|
|000015f0| 20 74 68 61 74 20 61 72 | 65 20 67 72 65 61 74 65 | that ar|e greate|
|00001600| 72 20 74 68 61 6e 20 6f | 72 0d 0a 00 65 71 75 61 |r than o|r...equa|
|00001610| 6c 20 74 6f 20 35 20 6f | 72 20 6c 65 73 73 20 74 |l to 5 o|r less t|
|00001620| 68 61 6e 20 6f 72 20 65 | 71 75 61 6c 20 74 6f 20 |han or e|qual to |
|00001630| 2d 37 2e 13 0d 0a 00 54 | 68 65 20 69 6e 65 71 75 |-7.....T|he inequ|
|00001640| 61 6c 69 74 79 20 69 73 | 20 74 68 65 72 65 66 6f |ality is| therefo|
|00001650| 72 65 20 73 61 74 69 73 | 66 69 65 64 20 69 66 20 |re satis|fied if |
|00001660| 11 33 78 20 11 31 6c 69 | 65 73 20 69 6e 20 74 68 |.3x .1li|es in th|
|00001670| 65 20 69 6e 74 65 72 76 | 61 6c 20 28 2d 11 34 38 |e interv|al (-.48|
|00001680| 11 31 2c 20 2d 37 5d 20 | 6f 72 20 0d 0a 00 69 6e |.1, -7] |or ...in|
|00001690| 20 74 68 65 20 69 6e 74 | 65 72 76 61 6c 20 5b 35 | the int|erval [5|
|000016a0| 2c 20 11 34 38 11 31 29 | 2e 0d 0a 00 0d 0b 00 54 |, .48.1)|.......T|
|000016b0| 68 65 20 67 72 61 70 68 | 20 6f 66 20 74 68 69 73 |he graph| of this|
|000016c0| 20 73 6f 6c 75 74 69 6f | 6e 20 73 65 74 20 69 73 | solutio|n set is|
|000016d0| 20 73 68 6f 77 6e 20 62 | 65 6c 6f 77 2e 0d 0a 00 | shown b|elow....|
|000016e0| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|000016f0| 20 20 20 20 20 14 6b 32 | 2d 37 2d 37 2e 6d 14 32 | .k2|-7-7.m.2|
|00001700| 33 14 34 14 35 30 14 35 | 14 0d 0a 00 53 65 63 74 |3.4.50.5|....Sect|
|00001710| 69 6f 6e 20 31 2e 37 20 | 20 4c 69 6e 65 61 72 20 |ion 1.7 | Linear |
|00001720| 49 6e 65 71 75 61 6c 69 | 74 69 65 73 0d 0b 00 53 |Inequali|ties...S|
|00001730| 75 70 70 6f 73 65 20 79 | 6f 75 20 77 6f 72 6b 20 |uppose y|ou work |
|00001740| 61 74 20 61 20 66 75 72 | 6e 69 74 75 72 65 20 73 |at a fur|niture s|
|00001750| 74 6f 72 65 20 77 68 65 | 72 65 20 79 6f 75 72 20 |tore whe|re your |
|00001760| 73 61 6c 61 72 79 20 69 | 73 20 24 32 30 30 2e 30 |salary i|s $200.0|
|00001770| 30 20 70 65 72 20 77 65 | 65 6b 20 0d 0a 00 70 6c |0 per we|ek ...pl|
|00001780| 75 73 20 34 20 70 65 72 | 63 65 6e 74 20 63 6f 6d |us 4 per|cent com|
|00001790| 6d 69 73 73 69 6f 6e 20 | 6f 6e 20 79 6f 75 72 20 |mission |on your |
|000017a0| 74 6f 74 61 6c 20 73 61 | 6c 65 73 2e 20 20 49 66 |total sa|les. If|
|000017b0| 20 79 6f 75 20 77 61 6e | 74 20 79 6f 75 72 20 70 | you wan|t your p|
|000017c0| 61 79 20 74 6f 20 62 65 | 20 61 74 0d 0a 00 6c 65 |ay to be| at...le|
|000017d0| 61 73 74 20 24 33 32 30 | 2e 30 30 2c 20 77 68 61 |ast $320|.00, wha|
|000017e0| 74 20 6d 75 73 74 20 79 | 6f 75 72 20 74 6f 74 61 |t must y|our tota|
|000017f0| 6c 20 73 61 6c 65 73 20 | 72 65 61 63 68 20 66 6f |l sales |reach fo|
|00001800| 72 20 74 68 65 20 77 65 | 65 6b 3f 0d 0a 00 0d 0b |r the we|ek?.....|
|00001810| 00 13 12 31 53 4f 4c 55 | 54 49 4f 4e 12 30 0d 0b |...1SOLU|TION.0..|
|00001820| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001830| 11 34 5b 32 32 32 32 32 | 32 5d 20 20 20 5b 32 32 |.4[22222|2] [22|
|00001840| 32 32 32 32 32 32 32 32 | 5d 20 20 20 5b 32 32 32 |22222222|] [222|
|00001850| 32 32 32 32 32 32 32 32 | 5d 0d 0b 00 20 20 20 20 |22222222|]... |
|00001860| 20 20 20 20 20 20 20 20 | 20 20 20 21 11 32 57 65 | | !.2We|
|00001870| 65 6b 6c 79 11 34 21 20 | 20 20 21 11 32 43 6f 6d |ekly.4! | !.2Com|
|00001880| 6d 69 73 73 69 6f 6e 11 | 34 21 20 20 20 21 11 32 |mission.|4! !.2|
|00001890| 54 6f 74 61 6c 20 73 61 | 6c 65 73 11 34 21 0d 0b |Total sa|les.4!..|
|000018a0| 00 11 31 56 65 72 62 61 | 6c 20 6d 6f 64 65 6c 3a |..1Verba|l model:|
|000018b0| 20 20 11 34 21 20 20 20 | 20 20 20 21 20 11 31 2b | .4! | ! .1+|
|000018c0| 20 11 34 21 20 20 20 20 | 20 20 20 20 20 20 21 20 | .4! | ! |
|000018d0| 2a 20 21 20 20 20 20 20 | 20 20 20 20 20 20 21 20 |* ! | ! |
|000018e0| 3e 20 11 31 24 33 32 30 | 2e 30 30 0d 0b 00 20 20 |> .1$320|.00... |
|000018f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 34 21 | | .4!|
|00001900| 11 32 73 61 6c 61 72 79 | 11 34 21 20 20 20 21 11 |.2salary|.4! !.|
|00001910| 32 70 65 72 63 65 6e 74 | 61 67 65 11 34 21 20 20 |2percent|age.4! |
|00001920| 20 21 11 32 66 6f 72 20 | 77 65 65 6b 20 20 20 11 | !.2for |week .|
|00001930| 34 21 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |4!... | |
|00001940| 20 20 20 20 6c 32 32 32 | 32 32 32 6a 20 20 20 6c | l222|222j l|
|00001950| 32 32 32 32 32 32 32 32 | 32 32 6a 20 20 20 6c 32 |22222222|22j l2|
|00001960| 32 32 32 32 32 32 32 32 | 32 32 6a 20 20 20 20 20 |22222222|22j |
|00001970| 20 20 20 20 20 11 31 13 | 0d 0a 00 0d 0b 00 20 20 | .1.|...... |
|00001980| 20 20 20 20 4c 61 62 65 | 6c 73 3a 20 20 57 65 65 | Labe|ls: Wee|
|00001990| 6b 6c 79 20 73 61 6c 61 | 72 79 20 3d 20 24 32 30 |kly sala|ry = $20|
|000019a0| 30 13 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |0.... | |
|000019b0| 20 20 20 20 43 6f 6d 6d | 69 73 73 69 6f 6e 20 70 | Comm|ission p|
|000019c0| 65 72 63 65 6e 74 61 67 | 65 20 3d 20 30 2e 30 34 |ercentag|e = 0.04|
|000019d0| 20 20 28 64 65 63 69 6d | 61 6c 20 66 6f 72 6d 29 | (decim|al form)|
|000019e0| 13 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|000019f0| 20 20 20 54 6f 74 61 6c | 20 73 61 6c 65 73 20 66 | Total| sales f|
|00001a00| 6f 72 20 77 65 65 6b 20 | 3d 20 11 33 73 20 20 11 |or week |= .3s .|
|00001a10| 31 28 69 6e 20 64 6f 6c | 6c 61 72 73 29 13 0d 0a |1(in dol|lars)...|
|00001a20| 00 0d 0b 00 20 20 49 6e | 65 71 75 61 6c 69 74 79 |.... In|equality|
|00001a30| 3a 20 20 32 30 30 20 2b | 20 30 2e 30 34 11 33 73 |: 200 +| 0.04.3s|
|00001a40| 20 11 34 3e 20 11 31 33 | 32 30 13 0d 0a 00 0d 0b | .4> .13|20......|
|00001a50| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001a60| 20 20 20 20 20 20 30 2e | 30 34 11 33 73 20 11 34 | 0.|04.3s .4|
|00001a70| 3e 20 11 31 31 32 30 13 | 0d 0a 00 0d 0b 00 20 20 |> .1120.|...... |
|00001a80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001a90| 20 20 20 20 20 20 20 11 | 33 73 20 11 34 3e 20 11 | .|3s .4> .|
|00001aa0| 31 33 30 30 30 13 0d 0a | 00 0d 0b 00 54 68 65 72 |13000...|....Ther|
|00001ab0| 65 66 6f 72 65 2c 20 69 | 66 20 79 6f 75 72 20 70 |efore, i|f your p|
|00001ac0| 61 79 20 69 73 20 74 6f | 20 62 65 20 61 74 20 6c |ay is to| be at l|
|00001ad0| 65 61 73 74 20 24 33 32 | 30 2e 30 30 2c 20 79 6f |east $32|0.00, yo|
|00001ae0| 75 20 6d 75 73 74 20 73 | 65 6c 6c 20 61 74 20 6c |u must s|ell at l|
|00001af0| 65 61 73 74 0d 0a 00 24 | 33 30 30 30 20 77 6f 72 |east...$|3000 wor|
|00001b00| 74 68 20 6f 66 20 66 75 | 72 6e 69 74 75 72 65 20 |th of fu|rniture |
|00001b10| 65 61 63 68 20 77 65 65 | 6b 2e 0d 0a 00 53 65 63 |each wee|k....Sec|
|00001b20| 74 69 6f 6e 20 31 2e 37 | 20 20 4c 69 6e 65 61 72 |tion 1.7| Linear|
|00001b30| 20 49 6e 65 71 75 61 6c | 69 74 69 65 73 0d 0b 00 | Inequal|ities...|
|00001b40| 44 65 74 65 72 6d 69 6e | 65 20 77 68 65 74 68 65 |Determin|e whethe|
|00001b50| 72 20 74 68 65 20 67 69 | 76 65 6e 20 76 61 6c 75 |r the gi|ven valu|
|00001b60| 65 73 20 6f 66 20 11 33 | 78 20 11 31 61 72 65 20 |es of .3|x .1are |
|00001b70| 73 6f 6c 75 74 69 6f 6e | 73 20 6f 66 20 74 68 65 |solution|s of the|
|00001b80| 20 69 6e 65 71 75 61 6c | 69 74 79 2e 0d 0a 00 20 | inequal|ity.... |
|00001b90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ba0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 32 0d | | .22.|
|00001bb0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001bc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 | | .3|
|00001bd0| 78 20 20 11 31 2b 20 35 | 0d 0b 00 20 20 20 20 20 |x .1+ 5|... |
|00001be0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001bf0| 20 20 20 32 20 11 34 3c | 20 32 32 32 32 32 32 20 | 2 .4<| 222222 |
|00001c00| 11 31 3c 20 31 30 0d 0b | 00 20 20 20 20 20 20 20 |.1< 10..|. |
|00001c10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001c20| 20 20 20 20 20 20 20 20 | 33 0d 0a 00 0d 0b 00 28 | |3......(|
|00001c30| 61 29 20 11 33 78 20 11 | 31 3d 20 2d 33 20 20 20 |a) .3x .|1= -3 |
|00001c40| 20 20 20 20 20 20 20 28 | 62 29 20 11 33 78 20 11 | (|b) .3x .|
|00001c50| 31 3d 20 35 20 20 20 20 | 20 20 20 20 20 20 28 63 |1= 5 | (c|
|00001c60| 29 20 11 33 78 20 11 31 | 3d 20 31 20 20 20 20 20 |) .3x .1|= 1 |
|00001c70| 20 20 20 20 20 28 64 29 | 20 11 33 78 20 11 31 3d | (d)| .3x .1=|
|00001c80| 20 31 2f 32 0d 0a 00 0d | 0a 00 13 12 31 53 4f 4c | 1/2....|....1SOL|
|00001c90| 55 54 49 4f 4e 12 30 0d | 0a 00 20 20 20 20 20 20 |UTION.0.|.. |
|00001ca0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001cb0| 20 20 20 12 31 3f 12 30 | 20 20 20 20 20 11 32 32 | .1?.0| .22|
|00001cc0| 20 20 20 20 20 11 31 12 | 31 3f 12 30 0d 0b 00 20 | .1.|1?.0... |
|00001cd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ce0| 20 20 20 20 20 20 20 20 | 20 20 28 2d 33 29 20 20 | | (-3) |
|00001cf0| 2b 20 35 0d 0b 00 61 29 | 20 11 33 78 20 11 31 3d |+ 5...a)| .3x .1=|
|00001d00| 20 2d 33 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | -3 | |
|00001d10| 20 32 20 11 34 3c 20 32 | 32 32 32 32 32 32 32 32 | 2 .4< 2|22222222|
|00001d20| 20 11 31 3c 20 31 30 0d | 0b 00 20 20 20 20 20 20 | .1< 10.|.. |
|00001d30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d40| 20 20 20 20 20 20 20 20 | 20 33 20 20 20 20 20 20 | | 3 |
|00001d50| 20 20 20 13 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 | .....|.. |
|00001d60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d70| 20 20 20 20 20 20 20 20 | 31 34 0d 0b 00 20 20 20 | |14... |
|00001d80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d90| 20 20 20 20 20 20 20 32 | 20 11 34 3c 20 32 32 20 | 2| .4< 22 |
|00001da0| 11 31 3c 20 31 30 20 20 | 20 20 20 20 20 20 20 12 |.1< 10 | .|
|00001db0| 31 11 32 78 3d 2d 33 20 | 69 73 20 61 20 73 6f 6c |1.2x=-3 |is a sol|
|00001dc0| 75 74 69 6f 6e 11 31 12 | 30 0d 0b 00 20 20 20 20 |ution.1.|0... |
|00001dd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001de0| 20 20 20 20 20 20 20 20 | 20 20 20 33 20 20 20 20 | | 3 |
|00001df0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001e00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001e10| 20 20 13 0d 0a 00 0d 0b | 00 20 20 20 20 20 20 20 | ......|. |
|00001e20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001e30| 20 20 12 31 3f 12 30 20 | 20 20 20 11 32 32 20 20 | .1?.0 | .22 |
|00001e40| 20 20 20 11 31 12 31 3f | 12 30 0d 0b 00 20 20 20 | .1.1?|.0... |
|00001e50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001e60| 20 20 20 20 20 20 20 20 | 28 35 29 20 20 2b 20 35 | |(5) + 5|
|00001e70| 0d 0b 00 62 29 20 11 33 | 78 20 11 31 3d 20 35 20 |...b) .3|x .1= 5 |
|00001e80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 32 20 | | 2 |
|00001e90| 11 34 3c 20 32 32 32 32 | 32 32 32 32 20 11 31 3c |.4< 2222|2222 .1<|
|00001ea0| 20 31 30 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | 10... | |
|00001eb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ec0| 20 20 20 20 20 33 20 20 | 20 20 20 20 20 20 13 0d | 3 | ..|
|00001ed0| 0a 00 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |..... | |
|00001ee0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ef0| 20 20 20 33 30 0d 0b 00 | 20 20 20 20 20 20 20 20 | 30...| |
|00001f00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001f10| 20 20 32 20 11 34 3c 20 | 32 32 20 11 31 3d 20 31 | 2 .4< |22 .1= 1|
|00001f20| 30 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |0... | |
|00001f30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001f40| 20 20 20 33 0d 0a 00 0d | 0b 00 20 20 20 54 68 65 | 3....|.. The|
|00001f50| 20 72 69 67 68 74 20 73 | 69 64 65 20 6f 66 20 74 | right s|ide of t|
|00001f60| 68 65 20 69 6e 65 71 75 | 61 6c 69 74 79 20 69 73 |he inequ|ality is|
|00001f70| 20 6e 6f 74 20 73 61 74 | 69 73 66 69 65 64 2e 20 | not sat|isfied. |
|00001f80| 20 54 68 65 72 65 66 6f | 72 65 2c 20 11 33 78 20 | Therefo|re, .3x |
|00001f90| 11 31 3d 20 35 20 69 73 | 20 6e 6f 74 0d 0a 00 20 |.1= 5 is| not... |
|00001fa0| 20 20 61 20 73 6f 6c 75 | 74 69 6f 6e 2e 13 0d 0a | a solu|tion....|
|00001fb0| 00 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00001fc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 12 31 3f | | .1?|
|00001fd0| 12 30 20 20 20 20 11 32 | 32 20 20 20 20 20 11 31 |.0 .2|2 .1|
|00001fe0| 12 31 3f 12 30 0d 0b 00 | 20 20 20 20 20 20 20 20 |.1?.0...| |
|00001ff0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002000| 20 20 20 28 31 29 20 20 | 2b 20 35 0d 0b 00 63 29 | (1) |+ 5...c)|
|00002010| 20 11 33 78 20 11 31 3d | 20 31 20 20 20 20 20 20 | .3x .1=| 1 |
|00002020| 20 20 20 20 20 20 20 20 | 20 32 20 11 34 3c 20 32 | | 2 .4< 2|
|00002030| 32 32 32 32 32 32 32 20 | 11 31 3c 20 31 30 0d 0b |2222222 |.1< 10..|
|00002040| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00002050| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002060| 33 20 20 20 20 20 20 20 | 20 20 13 0d 0a 00 0d 0b |3 | ......|
|00002070| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00002080| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002090| 36 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |6... | |
|000020a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 32 | | 2|
|000020b0| 20 11 34 3c 20 32 20 11 | 31 3c 20 31 30 20 20 20 | .4< 2 .|1< 10 |
|000020c0| 20 20 20 20 20 20 12 31 | 11 32 78 3d 31 20 69 73 | .1|.2x=1 is|
|000020d0| 20 61 20 73 6f 6c 75 74 | 69 6f 6e 11 31 12 30 0d | a solut|ion.1.0.|
|000020e0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|000020f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002100| 20 33 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 3 | |
|00002110| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002120| 20 20 20 20 20 20 20 13 | 0d 0a 00 0d 0b 00 20 20 | .|...... |
|00002130| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002140| 20 20 20 20 20 20 20 20 | 20 11 34 28 11 31 31 11 | | .4(.11.|
|00002150| 34 29 11 32 32 0d 0b 00 | 20 20 20 20 20 20 20 20 |4).22...| |
|00002160| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002170| 20 11 31 12 31 3f 12 30 | 20 11 34 21 32 21 20 20 | .1.1?.0| .4!2! |
|00002180| 11 31 2b 20 35 20 12 31 | 3f 12 30 0d 0b 00 20 20 |.1+ 5 .1|?.0... |
|00002190| 20 20 20 20 20 31 20 20 | 20 20 20 20 20 20 20 20 | 1 | |
|000021a0| 20 20 20 20 20 20 20 20 | 20 11 34 39 11 31 32 11 | | .49.12.|
|000021b0| 34 30 0d 0b 00 11 31 64 | 29 20 11 33 78 20 11 31 |40....1d|) .3x .1|
|000021c0| 3d 20 11 34 32 20 20 20 | 20 20 20 20 20 20 20 20 |= .42 | |
|000021d0| 20 20 20 20 11 31 32 20 | 11 34 3c 20 32 32 32 32 | .12 |.4< 2222|
|000021e0| 32 32 32 32 20 11 31 3c | 20 31 30 0d 0b 00 20 20 |2222 .1<| 10... |
|000021f0| 20 20 20 20 20 32 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00002200| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 33 20 20 | | 3 |
|00002210| 20 20 20 20 20 20 20 20 | 13 0d 0a 00 0d 0b 00 20 | |....... |
|00002220| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002230| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 31 0d 0b | | 1..|
|00002240| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00002250| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 12 31 3f | | .1?|
|00002260| 12 30 20 11 34 32 20 11 | 31 2b 20 35 20 12 31 3f |.0 .42 .|1+ 5 .1?|
|00002270| 12 30 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |.0... | |
|00002280| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002290| 20 20 20 34 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | 4... | |
|000022a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000022b0| 20 32 20 11 34 3c 20 32 | 32 32 32 32 20 11 31 3c | 2 .4< 2|2222 .1<|
|000022c0| 20 31 30 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | 10... | |
|000022d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000022e0| 20 20 20 20 20 20 33 13 | 0d 0a 00 0d 0b 00 20 20 | 3.|...... |
|000022f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002300| 20 20 20 20 20 20 20 20 | 20 20 20 20 12 31 3f 20 | | .1? |
|00002310| 20 20 20 3f 12 30 0d 0b | 00 20 20 20 20 20 20 20 | ?.0..|. |
|00002320| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002330| 20 20 20 20 20 20 20 20 | 20 32 31 0d 0b 00 20 20 | | 21... |
|00002340| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002350| 20 20 20 20 20 20 20 20 | 20 20 32 20 11 34 3c 20 | | 2 .4< |
|00002360| 32 32 20 11 31 3c 20 31 | 30 0d 0b 00 20 20 20 20 |22 .1< 1|0... |
|00002370| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002380| 20 20 20 20 20 20 20 20 | 20 20 20 20 31 32 0d 0a | | 12..|
|00002390| 00 0d 0a 00 20 20 20 54 | 68 65 20 6c 65 66 74 20 |.... T|he left |
|000023a0| 73 69 64 65 20 6f 66 20 | 74 68 65 20 69 6e 65 71 |side of |the ineq|
|000023b0| 75 61 6c 69 74 79 20 69 | 73 20 6e 6f 74 20 73 61 |uality i|s not sa|
|000023c0| 74 69 73 66 69 65 64 20 | 73 69 6e 63 65 20 32 20 |tisfied |since 2 |
|000023d0| 3e 20 32 31 2f 31 32 2e | 0d 0a 00 20 20 20 54 68 |> 21/12.|... Th|
|000023e0| 65 72 65 66 6f 72 65 2c | 20 11 33 78 20 11 31 3d |erefore,| .3x .1=|
|000023f0| 20 31 2f 32 20 69 73 20 | 6e 6f 74 20 61 20 73 6f | 1/2 is |not a so|
|00002400| 6c 75 74 69 6f 6e 2e 0d | 0a 00 53 65 63 74 69 6f |lution..|..Sectio|
|00002410| 6e 20 31 2e 37 20 20 4c | 69 6e 65 61 72 20 49 6e |n 1.7 L|inear In|
|00002420| 65 71 75 61 6c 69 74 69 | 65 73 0d 0b 00 46 69 6e |equaliti|es...Fin|
|00002430| 64 20 74 68 65 20 69 6e | 74 65 72 76 61 6c 20 6f |d the in|terval o|
|00002440| 6e 20 74 68 65 20 72 65 | 61 6c 20 6e 75 6d 62 65 |n the re|al numbe|
|00002450| 72 20 6c 69 6e 65 20 66 | 6f 72 20 77 68 69 63 68 |r line f|or which|
|00002460| 20 74 68 65 20 72 61 64 | 69 63 61 6e 64 20 69 73 | the rad|icand is|
|00002470| 20 67 72 65 61 74 65 72 | 20 0d 0a 00 74 68 61 6e | greater| ...than|
|00002480| 20 6f 72 20 65 71 75 61 | 6c 20 74 6f 20 7a 65 72 | or equa|l to zer|
|00002490| 6f 2e 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |o.... | |
|000024a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000024b0| 20 11 34 44 32 32 32 32 | 32 32 32 0d 0b 00 20 20 | .4D2222|222... |
|000024c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000024d0| 20 20 20 20 20 20 20 20 | 20 53 20 11 31 2d 33 11 | | S .1-3.|
|000024e0| 33 78 20 11 31 2b 20 32 | 0d 0a 00 0d 0b 00 13 12 |3x .1+ 2|........|
|000024f0| 31 53 4f 4c 55 54 49 4f | 4e 12 30 0d 0a 00 20 20 |1SOLUTIO|N.0... |
|00002500| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00002510| 34 44 32 32 32 32 32 32 | 32 0d 0b 00 11 31 54 68 |4D222222|2....1Th|
|00002520| 65 20 72 61 64 69 63 61 | 6e 64 20 69 6e 20 11 34 |e radica|nd in .4|
|00002530| 53 20 11 31 2d 33 11 33 | 78 20 11 31 2b 20 32 20 |S .1-3.3|x .1+ 2 |
|00002540| 69 73 20 2d 33 11 33 78 | 20 11 31 2b 20 32 2e 13 |is -3.3x| .1+ 2..|
|00002550| 0d 0a 00 0d 0b 00 54 68 | 65 20 69 6e 65 71 75 61 |......Th|e inequa|
|00002560| 6c 69 74 79 20 77 65 20 | 6e 65 65 64 20 74 6f 20 |lity we |need to |
|00002570| 73 6f 6c 76 65 20 69 73 | 0d 0a 00 20 20 20 20 20 |solve is|... |
|00002580| 20 20 20 20 20 20 20 2d | 33 11 33 78 20 11 31 2b | -|3.3x .1+|
|00002590| 20 32 20 11 34 3e 20 11 | 31 30 2e 13 0d 0a 00 0d | 2 .4> .|10......|
|000025a0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|000025b0| 20 20 2d 33 11 33 78 20 | 11 34 3e 20 11 31 2d 32 | -3.3x |.4> .1-2|
|000025c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000025d0| 20 20 20 12 31 11 32 53 | 75 62 74 72 61 63 74 20 | .1.2S|ubtract |
|000025e0| 32 11 31 12 30 13 0d 0a | 00 0d 0b 00 20 20 20 20 |2.1.0...|.... |
|000025f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002600| 20 20 2d 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | -2... | |
|00002610| 20 20 20 20 20 20 20 20 | 20 11 33 78 20 11 34 3c | | .3x .4<|
|00002620| 20 32 32 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 22 | |
|00002630| 20 20 20 20 20 20 11 31 | 12 31 11 32 44 69 76 69 | .1|.1.2Divi|
|00002640| 64 65 20 62 79 20 2d 33 | 20 26 20 72 65 76 65 72 |de by -3| & rever|
|00002650| 73 65 20 69 6e 65 71 75 | 61 6c 69 74 79 11 31 12 |se inequ|ality.1.|
|00002660| 30 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |0... | |
|00002670| 20 20 20 20 20 20 20 20 | 20 20 2d 33 20 20 20 20 | | -3 |
|00002680| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002690| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000026a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000026b0| 13 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|000026c0| 20 20 20 20 20 20 20 20 | 20 20 32 0d 0b 00 20 20 | | 2... |
|000026d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000026e0| 11 33 78 20 11 34 3c 20 | 32 20 20 20 20 20 20 20 |.3x .4< |2 |
|000026f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 31 12 | | .1.|
|00002700| 31 11 32 53 6f 6c 75 74 | 69 6f 6e 11 31 12 30 0d |1.2Solut|ion.1.0.|
|00002710| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00002720| 20 20 20 20 20 20 20 20 | 33 20 20 20 20 20 20 20 | |3 |
|00002730| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002740| 20 20 20 20 20 13 0d 0a | 00 0d 0b 00 54 68 65 20 | ...|....The |
|00002750| 69 6e 74 65 72 76 61 6c | 20 69 73 20 28 2d 11 34 |interval| is (-.4|
|00002760| 38 11 31 2c 11 32 32 2f | 33 11 31 5d 2e 0d 0a 00 |8.1,.22/|3.1]....|
|00002770| 53 65 63 74 69 6f 6e 20 | 31 2e 37 20 20 4c 69 6e |Section |1.7 Lin|
|00002780| 65 61 72 20 49 6e 65 71 | 75 61 6c 69 74 69 65 73 |ear Ineq|ualities|
|00002790| 0d 0b 00 55 73 65 20 61 | 62 73 6f 6c 75 74 65 20 |...Use a|bsolute |
|000027a0| 76 61 6c 75 65 20 6e 6f | 74 61 74 69 6f 6e 20 74 |value no|tation t|
|000027b0| 6f 20 64 65 66 69 6e 65 | 20 74 68 65 20 70 61 69 |o define| the pai|
|000027c0| 72 20 6f 66 20 69 6e 74 | 65 72 76 61 6c 73 20 6f |r of int|ervals o|
|000027d0| 6e 20 74 68 65 20 72 65 | 61 6c 0d 0a 00 6e 75 6d |n the re|al...num|
|000027e0| 62 65 72 20 6c 69 6e 65 | 20 67 69 76 65 6e 20 62 |ber line| given b|
|000027f0| 65 6c 6f 77 2e 0d 0a 00 | 14 6b 2d 32 2d 37 2d 39 |elow....|.k-2-7-9|
|00002800| 2e 68 69 14 32 30 14 36 | 14 32 39 14 34 14 0d 0a |.hi.20.6|.29.4...|
|00002810| 00 0d 0a 00 0d 0a 00 0d | 0a 00 13 12 31 53 4f 4c |........|....1SOL|
|00002820| 55 54 49 4f 4e 12 30 0d | 0a 00 0d 0b 00 54 68 65 |UTION.0.|.....The|
|00002830| 20 67 72 61 70 68 20 69 | 6e 64 69 63 61 74 65 73 | graph i|ndicates|
|00002840| 20 74 68 61 74 20 77 65 | 20 61 72 65 20 69 6e 74 | that we| are int|
|00002850| 65 72 65 73 74 65 64 20 | 69 6e 20 61 6c 6c 20 6e |erested |in all n|
|00002860| 75 6d 62 65 72 73 20 11 | 33 78 20 11 31 77 68 6f |umbers .|3x .1who|
|00002870| 73 65 20 64 69 73 74 61 | 6e 63 65 20 0d 0a 00 66 |se dista|nce ...f|
|00002880| 72 6f 6d 20 2d 31 20 69 | 73 20 67 72 65 61 74 65 |rom -1 i|s greate|
|00002890| 72 20 74 68 61 6e 20 33 | 2e 13 0d 0a 00 0d 0b 00 |r than 3|........|
|000028a0| 54 68 65 20 69 6e 65 71 | 75 61 6c 69 74 79 20 74 |The ineq|uality t|
|000028b0| 68 61 74 20 63 6f 72 72 | 65 73 70 6f 6e 64 73 20 |hat corr|esponds |
|000028c0| 74 6f 20 74 68 69 73 20 | 67 72 61 70 68 20 69 73 |to this |graph is|
|000028d0| 20 74 68 65 72 65 66 6f | 72 65 0d 0a 00 0d 0b 00 | therefo|re......|
|000028e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 | | .3|
|000028f0| 7c 78 20 11 31 2d 20 28 | 2d 31 29 11 33 7c 20 11 ||x .1- (|-1).3| .|
|00002900| 31 3e 20 33 20 20 20 6f | 72 20 20 20 11 33 7c 78 |1> 3 o|r .3|x|
|00002910| 20 11 31 2b 20 31 11 33 | 7c 20 11 31 3e 20 33 2e | .1+ 1.3|| .1> 3.|
|00002920| 0d 0a 00 30 00 00 00 ac | 02 00 00 4d 20 00 00 10 |...0....|...M ...|
|00002930| 00 00 00 00 00 00 00 65 | 31 2d 37 00 fc 02 00 00 |.......e|1-7.....|
|00002940| 1a 04 00 00 4d 20 00 00 | dc 02 00 00 00 00 00 00 |....M ..|........|
|00002950| 65 31 2d 37 2d 31 00 36 | 07 00 00 6e 02 00 00 4d |e1-7-1.6|...n...M|
|00002960| 20 00 00 16 07 00 00 00 | 00 00 00 65 31 2d 37 2d | .......|...e1-7-|
|00002970| 32 00 c4 09 00 00 d3 02 | 00 00 4d 20 00 00 a4 09 |2.......|..M ....|
|00002980| 00 00 00 00 00 00 65 31 | 2d 37 2d 33 00 b7 0c 00 |......e1|-7-3....|
|00002990| 00 bd 02 00 00 4d 20 00 | 00 97 0c 00 00 00 00 00 |.....M .|........|
|000029a0| 00 65 31 2d 37 2d 34 00 | 94 0f 00 00 d8 02 00 00 |.e1-7-4.|........|
|000029b0| 4d 20 00 00 74 0f 00 00 | 00 00 00 00 65 31 2d 37 |M ..t...|....e1-7|
|000029c0| 2d 35 00 8c 12 00 00 80 | 04 00 00 4d 20 00 00 6c |-5......|...M ..l|
|000029d0| 12 00 00 00 00 00 00 65 | 31 2d 37 2d 36 00 2c 17 |.......e|1-7-6.,.|
|000029e0| 00 00 f1 03 00 00 4d 20 | 00 00 0c 17 00 00 00 00 |......M |........|
|000029f0| 00 00 65 31 2d 37 2d 37 | 00 3d 1b 00 00 cd 08 00 |..e1-7-7|.=......|
|00002a00| 00 4d 20 00 00 1d 1b 00 | 00 00 00 00 00 69 31 2d |.M .....|.....i1-|
|00002a10| 37 2d 31 00 2a 24 00 00 | 46 03 00 00 4d 20 00 00 |7-1.*$..|F...M ..|
|00002a20| 0a 24 00 00 00 00 00 00 | 69 31 2d 37 2d 32 00 90 |.$......|i1-7-2..|
|00002a30| 27 00 00 93 01 00 00 4d | 20 00 00 70 27 00 00 00 |'......M| ..p'...|
|00002a40| 00 00 00 69 31 2d 37 2d | 33 00 |...i1-7-|3. |
+--------+-------------------------+-------------------------+--------+--------+